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An evolutionary algorithm called `differential evolution' is combined with

Monte Carlo simulation to determine and optimize models of disordered crystal

structures. Requirements for successfully ®nding the parameters describing

disorder from diffuse scattering data are discussed and the algorithm is applied

to resolving the racemic and associated displacive disorder of the host

substructure in a perhydrotriphenylene inclusion compound. Re®nement

resulted in a very good visual agreement between observed and calculated

intensities and in a relatively low value of Rdiffuse = 0.148 (3). The computations

for determining and re®ning the structure took 29 d with ®ve to ten workstations

running in parallel. Analysis of the progress of the structure determination

shows that the essential information can be obtained within a few hours. Limits

of the technique and strategies to optimize the procedure are discussed.

1. Introduction

Disorder in crystals implies departure from perfect transla-

tional order and is associated with diffuse scattering. A

quantitative characterization of such disorder from diffuse

scattering proceeds in three steps: (i) deriving as much infor-

mation as possible from the average structure about the types

of disorder (occupational, positional, displacive, orientational,

conformational etc.); (ii) qualitative interpretation of the

diffuse scattering and quantitative modelling of faults

including their spatial distribution; (iii) re®nement of the

parameters de®ning the model. Before fast computers and

Fourier transform algorithms were available, analysis of

diffuse scattering was restricted to relatively simple frequently

one-dimensional problems, for which the observed intensities

could be described in terms of one or a few analytical equa-

tions with a small number of parameters (see e.g. Guinier,

1963; Rosshirt et al., 1985; Weber et al., 2000). With the advent

of more ef®cient hard- and software, more complicated

disordered structures have been tackled, relatively large

model crystals simulated and their Fourier transforms

compared with experiment (Proffen & Welberry, 1997;

Welberry et al., 1998, 2001).

Current methods of analysing disordered structures

combine Monte Carlo (MC) simulation for model building

with different ways to re®ne the model parameters. The most

developed technique is direct MC simulation (Proffen &

Welberry, 1998). The initial model crystal is set up using

disorder information from the average structure and

neglecting all correlation of disorder between neighbouring

unit cells. The lattice energy of the crystal is calculated with

interatomic or intermolecular potentials and minimized by

randomly replacing or displacing atoms or molecules. A new

conformation is accepted if �E = Enew ÿ Eold < 0. Otherwise

the old conformation is restored with a certain probability.

The Fourier transform of the equilibrated model crystal is

calculated and compared with the experimental data. If the ®t

is unsatisfactory, the parameters are adjusted manually and

the MC simulation is repeated. The performance of the

re®nement is usually low, but the technique has the advantage

that the disordered structure may be described by relatively

few parameters, which may have direct chemical signi®cance.

The method was improved by introducing automatic

re®nement of the model parameters based on a least-squares

algorithm (Welberry et al., 1998). Although applied success-

fully to a number of disordered systems (Mayo et al., 1999;

Welberry, 2000; Welberry et al., 2001), the method does not

overcome the problem intrinsic to all non-linear least-squares

re®nements: if the initial parameter values are not suf®ciently

close to the global minimum, optimization may be trapped

in a local minimum, i.e. re®nement may converge while still

maintaining noticeable differences between observed and

calculated quantities. In order to ascertain a high probability

of reaching the global minimum, several sets of parameters

need to be tested and the computations may become very time

consuming.



While the search for the best parameters is done manually

with the direct MC technique, the automatic MC technique is

a manual search with an automated local optimization. In this

paper, we describe a new method for analysing disordered

crystal structures, which provides a more general search of

optimal MC parameters using an evolutionary algorithm

called `differential evolution'.

2. Evolutionary algorithms and differential evolution

Evolutionary algorithms are optimization techniques that

mimic the Darwinian principle of natural evolution in the

computer. They are especially powerful for solving problems

that are too complex to be described analytically (see e.g.

Michalewicz, 1996). Evolutionary techniques have been

applied to several crystallographic problems. Shankland et al.

(1997), Kariuki et al. (1997) and Harris et al. (1998) used them

to solve crystal structures directly from powder data. Landree

et al. (1997) combined evolutionary strategies with direct

methods for the determination of surface structures.

Wormington et al. (1999) and Ulyanenkov et al. (2000) have

re®ned thin-®lm structures. In macromolecular crystal-

lography, Chang & Lewis (1997) proposed a molecular

replacement strategy based on an evolutionary algorithm.

Knorr & MaÈdler (1999) were the ®rst to apply evolutionary

strategies to the study of disorder in crystals using disorder

information exclusively from the average structure.

Like most other optimization techniques, evolutionary

algorithms require a parametric model of the problem. Using

the language of evolution, a parameter of the model is called a

gene, a vector of genes is called a chromosome. The parameter

values specify the genotype of a virtual individual. Its

appearance to its environment is its phenotype. At the

beginning of an evolutionary process, a starting set of indivi-

duals (population) with different genotypes is created. New

individuals (children) are created by recombination (cross-

over) and/or mutation (variation) of genes within the initial

generation (parents). The ®tness of parents and children is

determined by comparing the corresponding phenotypes with

prede®ned requirements. Only the ®ttest individuals from the

combined population of parents and children survive and form

the next generation of parents. This procedure is repeated for

a speci®ed number of generations or until the ®tness of the

population shows no further improvement.

There are many mechanisms for recombination and muta-

tion and many criteria for selecting the ®ttest individuals. For

an overview of algorithms, the reader is referred to the

literature (e.g. Goldberg, 1989; Michalewicz, 1996). Here we

restrict ourselves to the variant called differential evolution

(DE) as developed by Price & Storn (1997). It is said to be

easy to use and very ef®cient in ®nding the global minimum

for problems that may be parameterized in terms of real

numbers. DE is special in the way it handles recombination

and mutation (Fig. 1). Each individual of a parent generation

serves as one parent for an offspring. This parent is called the

target individual. The second parent is not taken directly from

the parent generation but is computed from three randomly

chosen individuals a, b, c in the parent generation. Their

chromosomes pa, pb and pc are combined according to

p0c � pc � fm�pa ÿ pb�: �1�

The mutation constant fm is a parameter of the algorithm. The

chromosome of a child is obtained by modifying the genes of

the target individual: one randomly selected gene is replaced

by the corresponding gene from p0c to ensure at least one

difference between the child and the target individual. The

child inherits the remaining genes from p0c with a probability

given by the crossover constant fr, another parameter of the

algorithm. In the new generation of parents, the child replaces

the target individual if its ®tness is higher. Otherwise the

target individual survives. This procedure is repeated until a

stop criterion is reached.

The degree of mutation in DE scales with the diversity of

the parent population. To ensure ef®ciency of DE, the initial

values of the genes should be taken at random from a range of

values that covers all reasonable models. As long as the

diversity is large, the difference vector paÿ pb in (1) has a high

probability of containing large components and the range of

parameter search is large as well. Note that this algorithm
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Figure 1
Illustration of the DE algorithm in two-dimensional parameter space. The
global minimum of the example is indicated by X. The ®lled circles show
six individuals of a parent population. The intermediate child p0c results
from its parent pc using (1), whereby the arrows represent the term
fm(paÿ pb) from (1) with fm = 0.75. Possible children to be compared with
the target individual are indicated by open circles. The probability of
selecting child 1, 2 or p0c as a new trial is governed by the parameter fr.
Child 1 (2) is obtained if the gene represented by the horizontal (vertical)
axis is taken from p0c and the other is taken from the target, while p0c is
selected if none of the target genes are inherited. Note that p0c is selected
as a trial individual if fr = 1, while 1 or 2 are taken if fr = 0, because child
and target chromosomes must differ in at least one gene. The dark grey
square indicates the region of individuals of the parent generation. The
fact that child 2 and p0c are outside the region covered by the parent
generation illustrates the ability of the differential evolution algorithm to
extend the search beyond the parameter range originally covered. The
light grey plus dark grey squares give the volume accessible to the
children.
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allows genes of a child to lie outside the initial region of

parameter values.

If several local minima populated with several individuals

are found, pa ÿ pb becomes small if pa and pb happen to be

from the same minimum; otherwise the difference remains

large. In such an intermediate stage of the optimization, small

difference vectors imply a local search in the neighbourhood

of a minimum, while large difference vectors imply continu-

ation of the global search. Finally, when all individuals are

concentrated in only one minimum, hopefully the global one,

all difference vectors are relatively small and the optimization

has again local character.

3. The use of differential evolution in combination with
Monte Carlo algorithms for the analysis of diffuse
scattering

According to Michalewicz, `a genetic algorithm (as any

evolution program) for a particular problem must have the

following ®ve components:
* a genetic representation for potential solutions to the

problem,
* a way to create an initial population of potential solutions,
* an evolution function that plays the role of the environ-

ment, rating solutions in terms of their ª®tness'',
* genetic operators that alter the composition of children,
* values for various parameters that the genetic algorithm

uses (population size, probabilities of applying genetic

operators etc.).' (Michalewicz, 1996, pp. 17ff.)

In the following, these requirements are adapted to the

investigation of diffuse intensities using the MC technique.

The use of constraints and restraints, the handling of experi-

mental data and the parallelization of DE are also considered.

For the sake of simplicity, the MC algorithm is described for

a crystal consisting of rigid orientationally ordered molecules.

Treatment of ionic and metallic compounds as well as of solids

consisting of ¯exible and orientationally disordered molecules

requires only slight modi®cations to the procedure described

below. Without loss of generality, the present discussion is

further restricted to harmonic pair potentials and disregards

correlations between model parameters. Special attention is

paid to the economic use of computing time because re®ne-

ment of disordered structures using MC techniques is

computationally extremely expensive. The cost is even higher

for evolutionary strategies because the search for the best

solution is not directed by a least-squares algorithm but

requires a smart trial-and-error technique.

Genetic representation: The genetic representation of a

problem implies an encoding of its physical content into a

model (genotype) and a decoding of the model into experi-

mentally observable quantities (phenotype). Each model

parameter (gene) has two attributes: ®rstly, its meaning in the

context of the model and, secondly, its numerical value. The

crucial step is the de®nition of meaning, i.e. of the relevant

interactions between molecules in the crystal. A description of

disordered crystals with atom±atom potential as used for the

prediction of average structures would be far too time

consuming for the simulation of disordered crystals. Instead,

the intermolecular interactions are described by a simpli®ed

set of interaction parameters, which is both adequate and

of a manageable size. At present, the problem of choosing

adequate parameters is best solved with the help of experi-

ence, chemical intuition and trial-and-error methods. For the

present purpose, a MC model is de®ned in terms of pair

interaction energies Eij(x) = Jij + kij(d0,ij ÿ x)2 between

neighbouring molecules i and j. Jij is an interaction constant

independent of the exact positions of molecules i and j, kij is a

Hook's law force constant, d0,ij is the equilibrium distance

between molecules i and j and (d0,ij ÿ x) is the deviation from

the equilibrium distance. The genotype is decoded into the

phenotype by executing the MC algorithm. This leads to the

model crystal and the corresponding calculated diffraction

intensities. Because of the simpli®ed representation of inter-

molecular interactions, the genes have no direct physical

meaning, only the phenotype has, since it is related to

experimental observations.

In principle, the question of meaning could also be treated

with evolutionary algorithms. Several techniques are based on

populations for which genes in the same position of a chro-

mosome have different meaning depending on the individual.

Even the number of genes need not be the same for all indi-

viduals (Michalewicz, 1996). However, a discussion of such

algorithms is beyond the scope of this paper. In DE, which is

designed to optimize real numbered values of genes, the

meaning and the number of genes are the same for all indi-

viduals.

Initial population: At the beginning of an evolutionary

procedure, a population of individuals with different and

random genotypes is de®ned by selecting the values of the

model parameters from reasonable ranges of starting values.

In as much as the physical meaning of the genes is limited,

such ranges cannot be de®ned easily from physical arguments

alone, but may have to be determined by trial and error or

by qualitative and semi-quantitative analysis of the diffuse

intensities. An example is described by Weber et al. (2002).

The ®tness function: An X-ray diffraction experiment

measures reciprocal-space properties of a phenotype. There-

fore, the ®tness of the genotype is de®ned as the agreement

between observed and calculated diffuse intensities, usually

expressed as �2 �Pw��I�2 or as

R � P
w��I�2

.P
wI2

obs

� �1=2

:

The summations include all reciprocal-space points used in the

analysis and w is a weighting factor for an individual data

point. The difference �I is calculated as Iobs ÿ (b + sIcalc),

where b denotes the background and s is a scale factor. In

order to keep the number of parameters small and to speed up

their re®nement, it is recommended that the scale factor and

background correction be obtained as described by Proffen &

Welberry (1997).

For automatic MC re®nement, weights are usually chosen as

w = 1=Iobs� 1=�2(Iobs) (Welberry et al., 1998; Mayo et al., 1999;

Welberry, 2000; Welberry et al., 2001). This choice takes into



account that high intensities are more affected by statistical

noise in the experimental data as well as in the calculated

intensities (see below). A disadvantage of this choice is that

contributions to the R value from narrow diffraction features,

which usually occupy a small volume of reciprocal space and

are more intense than broad ones, are downweighted whereas

the weaker broad features, i.e. disorder phenomena of short

correlation length, are overemphasized. Further, with w =

1=Iobs, systematic errors in the determination of the scattering

background strongly affect the goodness of ®t. For these

reasons, unit weights were used in this study.1

The �2 and R values re¯ect not only the quality of the

experimental data and the weights but also the quality of the

model and the respective calculated intensities. Both of these

depend not only on the meaning of the parameters but also on

the statistical properties of the model. Simulations always

result in model crystals, which are small compared with the

real crystal. Their characteristic probabilities ¯uctuate about a

mean value and are propagated to their Fourier transforms

and calculated diffraction patterns, which may be much more

noisy than the experimental one.

Welberry & Proffen (1998) have described a technique to

reduce the in¯uence of statistical ¯uctuations in simulated

structures on diffraction patterns. A number of small lots of

equal size are selected from a relatively large model crystal.

Their size has to be larger than the maximum correlation

lengths represented by the diffuse data chosen for inter-

pretation. The lots are distributed randomly and may overlap.

The Fourier transform is calculated for each single lot and the

intensities from all lots are summed up incoherently. The

variance of the calculated diffuse data decreases as the

number of lots increases.

The presence of noise in Icalc implies that the �2 hypersur-

face is not sharp as it is in the re®nement of an average

structure, where it has a unique value for a given set of

parameters. Statistical ¯uctuations in the structures of the lots

produce statistical ¯uctuations in the �2 values even for

identical parameter values (apparent ®tness). As a conse-

quence, an individual of high apparent but low intrinsic ®tness

may outdo an individual of low apparent but high intrinsic

®tness, especially when the simulated crystal and the number

of lots are small, e.g. at the beginning of a re®nement (see

below). With an increasing number of lots, the variance of the

calculated ®tness of a given individual decreases and conse-

quently the probability that an individual of low intrinsic

®tness outdoes an individual of higher intrinsic ®tness

decreases as well. Thus, the fuzziness of the �2 surface is not

only a problem, it also provides a welcome mechanism for

escaping from local minima and sampling extended areas of

parameter space in the early stages of re®nement. The number

of lots for calculating intensities may be seen as an analogue to

the model temperature in the well known technique of simu-

lated annealing (Kirkpatrick et al., 1983). A small number of

lots corresponds to a high model temperature.

In the early stages of a re®nement when the model is still

poor, the in¯uence on �2 of statistical noise tends to be low

compared with the in¯uence of inappropriate values of the

genes. One may therefore start with a low number of lots. If

statistical noise in the calculated intensities begins to interfere

with the re®nement, the lot number must be increased. If this

does not decrease �2 signi®cantly, the evolution has reached

the global or a local minimum. The structural model should

then be checked for consistency with known structural data. In

case of inconsistencies, a new DE re®nement with a different

starting population should be performed or a different genetic

representation of the model should be attempted. Note that a

population, or a major part of it, may remain in a local

minimum for a long time. Thus, evolution should be stopped

only if results are satisfying or if further improvements exceed

the computational resources.

Artefacts in the calculated Fourier transform due to ®nite

lot size (series-termination effects) can be minimized by

taking into account the number of unit cells nx, ny and nz along

the corresponding directions. The Fourier transform of a lot

is the sum of a periodic Bragg-like scattering based on the

corresponding lattice function

L�hkl� � sin��hnx�
sin��nh�

sin��kny�
sin��k�

sin��lnz�
sin��l�

and of a continuous diffuse part. The lattice function has

nodes at non-integral reciprocal-lattice points h = mh=nx, k =

mk=ny or l = ml=nz with integer mh, mk and ml; it shows crystal

truncation ripples in between. Contributions to the diffuse

signal from such ripples may be avoided by subtracting inco-

herently from the total diffraction pattern the intensities

corresponding to the average structure of the lots. Because a

single and an average lot have the same dimension, their

truncation ripples have the same nodal properties and trun-

cation effects will disappear upon subtraction. In this study,

diffuse intensities are calculated only at the positions where

the lattice function and thus the contributions from the crystal

truncation ripples are zero. With this method, the average

intensity need not be calculated (Neder & Proffen, 1999).

Data binning and data selection: In general, the computa-

tional resources are insuf®cient to re®ne a complete diffuse

data set. The ®rst problem is discretization of the continuous

diffuse intensities by binning the data to a grid. The grid size

should be such that a minimum of data points gives a suf®cient

representation of the diffuse diffraction pro®les of interest.

Even after an optimized binning, the number of data points is

usually still far too large. It is further reduced by selecting

those areas of reciprocal space containing most information

on the disorder. Such reduction must be done very carefully to

avoid bias in the results.

Genetic operators and parameters of DE: Mutation and

recombination operations in DE have been described in x2.

The parameters required for DE are the mutation constant fm,

the crossover constant fr and the population size. Their best

values depend on the problem at hand and need to be found
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the variance±covariance matrix of the experimental observations would be
more appropriate because diffuse diffraction data are continuous.



research papers

530 Weber and BuÈrgi � Disordered crystal structures Acta Cryst. (2002). A58, 526±540

empirically (Price & Storn, 1997). Because DE combined with

MC techniques is very time consuming, it is impractical to test

different values of fm and fr and some guidelines for their

choice may be useful. The crossover constant fr determines the

probability that a gene of the child's chromosome comes from

the parent vector p0c [equation (1)]. With fr = 1, the child's

chromosome is identical with p0c and, in general, completely

different from all chromosomes in the parent generation. With

fr = 0, all but one, randomly selected, genes of a child come

from the target individual. The genetic material present in a

population will change only slowly even if children replace

their parents frequently. Satisfying results have been obtained

for crossover constants fr in the whole range between 0 and 1

(Price & Storn, 1997).

An interesting special case illustrates these considerations:

populations with all parameters linearly correlated, i.e.

distributed along a one-dimensional valley of the n-dimen-

sional �2 hypersurface. In this case, the difference vectors

paÿ pb tend to point along the valley and thus the endpoint of

the intermediate vector p0c in n-dimensional space is situated in

the valley as is the endpoint of vector pc. For fr = 1, the child is

p0c and thus the search is restricted to the bottom of the valley.

For fr = 0, the search is along only one of n coordinates which

in general does not coincide with the direction of the valley.

The ®rst scenario may drastically speed up the re®nement if

the bottom of the valley leads towards the global minimum,

while the second case may help to escape from the valley by

`tunneling' through the surrounding �2 walls.

Wormington et al. (1999) used a slightly modi®ed version of

DE. Instead of the randomly selected chromosome pc of (1),

they used the chromosome of the best individual. This restricts

the search space to the environment of the best individual

rather than to the environment of all individuals. While this

may lead to faster convergence, it also increases the risk of

getting trapped in a local minimum.

The mutation constant fm controls the volume covered by

the search. A large value of fm may be useful to extend the

volume of search space into the neighbourhood of the initial

volume, while a small value of fm restricts the search and may

be useful for ®nal optimization in the region of the global

minimum. Reasonable values of the mutation constant fm have

been reported to be in the range 0.4 � fm � 1.

The population size has to ensure suf®cient sampling of

parameter space while minimizing the substantial computa-

tional effort involved in the calculation of ®tness. Price &

Storn (1997) reported good results with a population size that

exceeds the number of re®ned parameters by a factor of 5

to 10.

Restraints and constraints representing prior knowledge

about a structure may be included in DE calculation to speed

it up and improve the structure model. Given the limited

physical meaning of most MC parameters, restraints and

constraints on the limiting values of genes should be applied

with great care unless they are known from previous experi-

ence. A less error-prone strategy is to apply restraints and

constraints to the real-space phenotypes, i.e. to the model

crystals from the MC simulation. Such models must conform

to the average structure obtained from Bragg re®nements.

They should not contradict general chemical information as

well as qualitative and semi-quantitative conclusions from

preliminary qualitative investigations of the diffuse diffraction

pattern. If they do, their ®tness must be reduced. A `death

penalty' may be imposed on strongly violating phenotypes

independently of their ®tness value. The latter avoids the

calculation of the expensive Fourier transformation and may

therefore speed up the re®nement, especially in the early

stages of evolution when completely unreasonable individuals

occur frequently.

Parallelization: For every genotype of a generation, a

structure is simulated and subdivided into single lots; these

are Fourier transformed and the ®tness of the individual is

calculated. The computations of ®tness are easily parallelized

by distributing them to different, independent, computers

connected via a network or to different processors on a multi-

processor computer. In addition, the Fourier transformation

of individual lots from the same model crystal may be similarly

optimized. The best strategy depends on available computer

resources and should minimize the involvement of the

network and the need for synchronization of the processes. In

this work, a scheme of distributed computing was used.

4. Application to a real world problem

In this section, DE is applied to resolving the host disorder in a

perhydrotriphenylene (PHTP) inclusion compound with 1-(4-

nitrophenyl)piperazine (NPP) as a guest molecule. A detailed

discussion of the MC part of the model and the resulting

disordered structure will be given elsewhere (Weber et al.,

2002).

4.1. Nature of disorder to be analysed

The host lattice of the PHTP5 �NPP crystal consists of stacks

of triangular PHTP molecules which form a honeycomb-like

tunnel architecture parallel to the orthorhombic c axis (KoÈ nig

et al., 1997) (Fig. 2). The space group is Cmc21 with a = 15.023,

b = 23.198, c = 4.73 AÊ at 100 K. The guest molecules are

enclosed in the tunnels with their long axis parallel to the

tunnels. Each stack of PHTP molecules is surrounded by three

other PHTP stacks, one along the b axis and two along the

positive and negative a directions. Neighbouring PHTP stacks

differ in their z position by c=2, i.e. by half a stacking distance.

The average structure of the host shows occupational disorder

with half an R-PHTP molecule superimposed on half an

S-PHTP molecule. The aim of our DE calculations was to ®nd

the distribution of R- and S-PHTP molecules and to analyse

the diffraction pattern for displacive disorder associated with

occupational R/S disorder.

4.2. Experimental observations and data selection

Diffraction data were recorded at T = 120 K with

synchrotron radiation at the Swiss Norwegian Beamline at

ESRF in Grenoble, France, using an image-plate detector.

They were transformed to reciprocal-space coordinates using



the program XCAVATE (Estermann & Steurer, 1998; Schei-

degger et al., 2000). Further experimental detail is given by

Weber et al. (2001). The information on the distribution of

R- and S-PHTP molecules and an associated displacive

disorder is concentrated in a subset of pseudo-hexagonal

diffuse columns parallel to c� and indexed by hexagonal

indices (HK). Cross sections through the columns at integer l

show relatively broad modulations of irregular shape (Fig. 3).

Three general features of the modulations are worth noting:

(i) the shape of the diffuse features are very similar in the hk1

and hk3 layers; (ii) high diffuse intensities in the hk1 and hk3

layers tend to be accompanied by low intensities at the same

hk positions in the hk2 layer and vice versa; and (iii) diffuse

intensities around the Bragg positions are highly asymmetric

along a�. The symmetry of the diffuse scattering from the

columns appears to be orthorhombic. The modulations

described for hk1 ± hk3 are hardly observable in the hk0 layer

(Weber et al., 2001), indicating that this layer exhibits practi-

cally no information on R/S disorder. This lack of information

is due to the fact that R- and S-PHTP molecules cannot be

distinguished in projection down the c axis (Fig. 2).

Diffuse intensities are high at positions close to integer l and

weak in between (see Fig. 4 in Weber et al., 2001). The pro®les

near integer l are slightly asymmetric along c�, broader at |l| +

j�lj than at |l|ÿ j�lj (Fig. 4a, this work). Their width varies as

a function of h and k. The pro®les of the diffuse data included

in the re®nement are broader by at least a factor of 10 than the

pro®les of those Bragg re¯ections that are weak enough not to

become saturated during the 60 s exposure. Since pro®les of

Bragg re¯ections represent an upper limit of the resolution

function, the observed diffuse pro®les can be calculated as a

convolution of experimentally observed Bragg pro®les with

calculated diffuse pro®les. Assuming that the shapes of Bragg

re¯ections and of diffuse features are approximately Gaussian,

the convolution produces another Gaussian with variance

�2
exp � �2

diffuse � �2
Bragg. Because �2

diffuse � 100�2
Bragg, the effect

of instrumental resolution on the widths of experimental

pro®les is less than 1% and has been neglected.

Data selection: A minimum of data has been selected that

represents as much information as possible on the R/S host

disorder and as little as possible about any other kind of
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Figure 2
The structure of the PHTP5�NPP inclusion compound viewed along the c
axis. The wavy shape of an R- and an S-PHTP molecule is shown in the
bottom right by black and grey carbon atoms above and below the
molecular plane, respectively. Different z positions of the molecules as a
whole are indicated by the presence (z = 0.75) or absence (z = 0.25) of a
shadow.

Table 1
Sections from experimental data used in the re®nement and R values corresponding to the best individual obtained by DE.

Layers a3±f 3 cover a somewhat shorter range along c� than a2±f2 because of strong diffuse guest scattering in the layer hk3.2; layers A2, B2, A3 and B3 are shown
in Fig. 3(c).

Layer h k l nh nk nl Individual R value

A2 5±10 0±3 2 51 31 1 0.16
B2 2±5 7±11 2 31 41 1 0.14
A3 5±10 0±3 3 51 31 1 0.14
B3 2±5 7±11 3 31 41 1 0.14
a2 6.5 0±2 1.8±2.2 1 21 21 0.12
b2 6.8 0±2 1.8±2.2 1 21 21 0.09
c2 7.2 0±2 1.8±2.2 1 21 21 0.10
d2 7.5 0±2 1.8±2.2 1 21 21 0.09
e2 2.5 7±11 1.8±2.2 1 41 21 0.14
f2 3.5 7±11 1.8±2.2 1 41 21 0.12
a3 6.5 0±2 2.8±3.16 1 21 19 0.12
b3 6.8 0±2 2.8±3.16 1 21 19 0.16
c3 7.2 0±2 2.8±3.16 1 21 19 0.21
d3 7.5 0±2 2.8±3.16 1 21 19 0.12
e3 2.5 7±11 2.8±3.16 1 41 19 0.20
f3 3.5 7±11 2.8±3.16 1 41 19 0.11
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disorder. Fortunately, the required information is concen-

trated in the narrow (HK) columns. The (10) and (01) columns

were selected because they are stronger than the (20) columns

and, unlike the (20) columns, have been recorded fully (Fig. 3).

This choice includes a system of streak-like scattering unre-

lated to racemic disorder of the host (Weber et al., 2001), but

Figure 3
Observed and calculated intensities in the hk1, hk2 and hk3 layers. The regions of the hk2 layer, which form the experimental basis of the structure
analysis are marked in (c). The rectangles show the selected areas within the a�b� plane (A2 middle, B2 top), while the lines are traces from sections
parallel to the b�c� plane. Data from the hk3 layer were taken in corresponding positions (Table 1). Calculated intensities represent the ®ttest individual
in the 220th generation of the reference calculation and are based on 150 lots from a model crystal consisting of 90 � 90 � 100 cells. Although no
experimental data from the hk1 layer were used in the re®nement, the agreement between observed and calculated intensities is good. Streak-like
scattering parallel to b�, which can be observed at 701 and close to 98x (x = 1, 2, 3) positions, is not related to R/S disorder and cannot be reproduced by
the current model. Smeared-out and additional re¯ections in the hk1 layer are due to twinning and to an additional phase of hexagonal symmetry (Weber
et al., 2001).



superimposed on all columns and potentially affecting the

analysis of R/S disorder. To minimize such interference, the

hk0 layer has been excluded from analysis because it shows

strong streak intensities but contains practically no informa-

tion on R/S disorder. The hk1 layer has been excluded for two

reasons: ®rst, streaking is still noticeable and, second, the

information on R/S disorder is hardly different from that in the

hk3 layer, which is not affected by streaking. This leaves

diffuse intensities within and close to the hk2 and hk3 layers

for interpretation.

Because of the ®nite and variable width of the pro®les

parallel to c� (see Fig. 4 in Weber et al., 2001), a re®nement of

sections taken exclusively from hkx layers at integer values of

x would disregard information on correlations along the

stacking direction. Therefore, several xkl sections with non-

integer x were also considered (Table 1). Both the hkx and xkl

sections were re-binned into a grid with step widths of �h =

�k = 0.1 and �l = 0.02. The grid size was chosen such that

(almost) every one-dimensional scan along c� includes at least

four data points with intensities higher than the half-maximum

of the feature. It guarantees a maximum of information about

the shape of the features parallel to c� and suf®cient sampling

of the background. In each section, positions of Bragg

re¯ections as well as the eight bins surrounding the position of

a Bragg re¯ection were marked as unobserved. This rather

generous suppression of experimental data is necessary

because all Bragg re¯ections in the regions of interest are

heavily overexposed and their tails cover an area larger than

the size of a single bin. The total number of observed data is

12344 in 16 sections.2

4.3. Definition of the differential evolution and Monte Carlo
models

Model crystals and their genetic representation: Model

crystals were constructed via MC growth simulations. PHTP

molecules were placed in an ab seed layer as in the average

structure but with random distribution of chirality. PHTP

molecules were then added along c. Their position and chir-

ality were determined with the assumption that an added

PHTP molecule interacts with only four neighbouring PHTP

molecules, i.e. with the top molecules in the growing stack and

in the three neighbouring stacks. The probability for adding

an R or an S molecule was assumed to follow a Boltzmann

distribution with p�S� � 1=f1� exp��E�S� ÿ E�R��=kT�g,
p(R) � 1 ÿ p(S) with k the Boltzmann constant and T the

model temperature. The energy E(S) corresponding to adding

an S molecule to the stack is expressed as:

E�S� � 1
2

P4

i�1

�kif�z�S� ÿ zi� ÿ dig2 � Ji�S�i�; �2�

zi is the z coordinate of one of the four neighbouring mole-

cules i, z(S) is the equilibrium position of the molecule being
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Figure 4
(a) Observed intensities in the 6.8kl layer (section b3, Table 1) and
corresponding differences Iobs ÿ Icalc (b) from reference re®nement and
(c) from test re®nement F. Calculated intensities used for maps (b) and
(c) were obtained from the best individual in the pertinent ®nal
generation. The asymmetry of the pro®les along c* is better reproduced
by the reference re®nement than by test re®nement F.

2 Supplementary data for this paper, including observed intensities, are
available from the IUCr electronic archives (Reference: SH0158). Services for
accessing these data are given at the back of the journal.
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added and is determined by four springs with spring constants

ki and equilibrium distances di. This position is

z�S� �P ki�zi � di�
.P

ki:

The Ising-type parameters Ji represent pair interaction ener-

gies between neighbouring molecules and are independent of

distance; � is 1 for an R molecule and ÿ1 for an S molecule.

The calculations of E(R) and z(R) are analogous. A random

number between 0 and 1 chosen from a uniform distribution is

compared with p(S). An S molecule is added at position z(S) if

the random number is smaller than p(S). Otherwise, an R

molecule is added at the position z(R). The x and y coordi-

nates of added molecules are assumed to be independent of

R/S disorder and were taken from the average structure.

A semi-quantitative analysis of the diffuse intensities,

symmetry considerations and chemical arguments suggested

seven parameters, i.e. seven genes, for the description of the

growth model: three pair interaction energies Ja, Jb and Jc and

three force constants ka, kb and kc along corresponding crystal

directions and independent of the chirality of the interacting

molecules; one parameter dRS accounting for deviations from

the average �z = 0.5 if PHTP molecules in neighbouring

stacks along the a axis are heterochiral. The equilibrium value

of �z for homochiral contacts along a and b was set to �z =

0.5, that for contacts along c to 0.99|c| for a homochiral and

1.09|c| for a heterochiral contact. These values were derived

from two considerations: ®rst, homo- and heterochiral van der

Waals contacts along c are expected to differ by about 0.1|c|

(�0.5 AÊ ) owing to differences in non-bonded H� � �H distances

and, second, preliminary analysis has shown that the relative

frequency of homochiral and heterochiral contacts is about

10 :1; kT was kept constant at 1.

At the beginning of a DE calculation, the model crystals

were grown over 600 layers along the c axis (= 300 unit cells)

on a seed consisting of 50 � 50 � 1 unit cells along a, b and c,

respectively. Only the ®nal 200 layers (100 unit cells) were

used for the selection of lots and calculation of ®tness to

minimize artefacts propagating from the seed layer.

Initial population: The population size was 40 individuals.

Using trial and error and a MC feedback mechanism as

implemented in the program package DISCUS (Proffen &

Neder, 1997), it was found that reasonable starting values of

the spring force constants are in the range [0±100]. Starting

values of the parameters Ja and Jb were taken from the

interval [0 . . . 1], those of Jc from [ÿ1 . . . 0]. Jc must be nega-

tive to reproduce the positive correlations along c. Starting

values of dRS were taken from the range [ÿ0.05 . . .ÿ0.01] (in

fractional z units, corresponding to [ÿ0.24 . . .ÿ0.047 AÊ ]). The

selection of these parameter ranges is discussed in more detail

elsewhere (Weber et al., 2002).

Genetic operators and parameters of DE: The chromosome

pc in (1) was de®ned to be the best individual from the current

population. The crossover constant fr was set to 0.5 and the

mutation constant fm to 0.7.

Restraints: The following restraints were enforced: popula-

tion of R- and S-PHTP molecules in the model crystal between

20 and 80% (expected value from the average structure is

50%); average translation from a new layer to the next-nearest

layer below between 0.66 and 1.5 fractional units (expected

value is 1); mean square deviation of the rigid molecules from

their average position smaller than 0.9 AÊ 2 (expected value

from atomic displacement parameters of the average structure

is < 0.05 AÊ 2); positive correlations between homochiral

molecules along c (diffuse intensities are highly concentrated

at integer l). Failure to comply with any of these restrictions

resulted in the death penalty. The restrictions are very

generous but turned out to be very useful, particularly in the

early stages of the re®nement. Since the death penalty was

applied before calculation of the Fourier transform, this

procedure improved the ef®ciency of the re®nement signi®-

cantly.

Fitness function: The ®tness of an individual is given by the

�2 value based on intensities and unit weights. Initially,

intensities were calculated from 20 lots. This number was later

increased to 40, 80 and 150 (see below). The size of a single lot

was 10 � 10 � 50 unit cells along a, b and c, respectively. Note

that the lot size matches the grid of the binned data. Fourier

transformation takes into account four different kinds of

PHTP molecules: R- and S-PHTP molecules, each in two

different orientations related by a rotation of 180� about c
(Fig. 2). A lot is separated into four sublattices, each

containing only those points that are occupied by the

respective kind of molecule. Using the convolution theorem,

the Fourier transform of each sublattice is obtained by

multiplying the Fourier transform of the sublattice calculated

from the molecular coordinates obtained by MC growth with

the corresponding molecular form factor calculated from the

atomic coordinates reported by KoÈ nig et al. (1997). The results

from the four sublattices are summed up coherently. The use

of molecular form factors allows the inclusion of the hydrogen

atoms of PHTP molecules without signi®cant extra cost and

accelerates the Fourier transformation enormously relative to

a calculation based on atomic positions. The Fourier trans-

forms of the sublattices and of the molecular form factors were

calculated with the program package DISCUS (Proffen &

Neder, 1997). The background and the scale factor were set to

be the same for all reciprocal-space sections.

Computations: Generation of the model crystals and

computation of their ®tness function was distributed to as

many as ten processors. A `master computer', which is

connected to `slave computers' via a network, coordinates the

computations and controls the progress of DE. At the

beginning of the process, the master connects to a free slave

via remote control (program telnet) and starts a program

installed locally on the slave and supplies it with the chro-

mosome of an individual. The slave then performs the crystal-

growth simulation and the subsequent Fourier transformation.

The master repeats this process until all available computers

are busy. A slave that has ®nished its job connects to the

master via ®le transfer protocol ftp and sends a ®le containing

the resulting �2 value of the individual and, if requested,

further information about the growth simulation and the

corresponding Fourier transform. In addition, the slave asks
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Figure 5
Evolution of the model parameters and of the unweighted R value. The bullets show minimum, average and maximum values and the error bars indicate
r.m.s. deviations from the population average in each generation. The vertical bars indicate the generation at which the number of lots was doubled. In
(h), the elapsed wall clock time is shown on the right.
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the master via telnet to read the results and to supply the

chromosome of a new individual. The master program keeps

track of the jobs in progress, those that are ®nished and those

that are in the waiting queue. When the number of submitted

but incomplete jobs becomes smaller than the number of

slaves, the master randomly selects a job from the `in progress

list' and resubmits it to a free slave. This redundancy avoids

delays due to a slave that fails to report results for reasons that

are beyond the control of the master, e.g. network errors.

Although very simple, this redundancy procedure turned out

to be very robust against communication errors. Finally, when

the calculation of all �2 values of one generation is ®nished,

the master stops the remaining but now redundant jobs,

calculates the genes of the next generation and starts another

round of calculating �2 values. The list of available slave

computers is updated after every generation allowing

computers to be added or removed dynamically depending on

availability.

A Pentium MMX, 233 MHz computer running under Linux

was used as the master computer. In addition, the following

machines were available as slaves:
* six slots on a Sun SPARC workstation cluster running

under the operating system Solaris 2.6;
* one Silicon Graphics Indigo 2 workstation running under

IRIX;
* one Pentium III, 800 Mhz personal computer running

under Linux.

Note that this rather heterogeneous collection of computers

could be combined without any problems. Note also that the

Pentium III computer was located at the University of

WuÈ rzburg, Germany, i.e. several hundred kilometres from the

master computer in Berne, Switzerland; it was included in the

procedure without any problems. Depending on availability, it

was possible to run ®ve to ten jobs simultaneously. Given the

heterogeneity of machines and the ¯uctuations in computing

power, it is neither possible nor meaningful to report CPU

time used. Instead, wall clock time is given. This provides a

suf®cient basis for crude comparisons of the time require-

ments for the different stages of the re®nement.

4.4. Progress and results of a full calculation

The evolution of R values and parameters during the DE

calculation is shown in Fig. 5. The R value decreased steeply in

the ®rst 25 generations. No signi®cant improvement was found

after about 80 generations. Visual inspection of the calculated

diffraction patterns showed that most of the differences

between observed and calculated intensities can be assigned to

noise in Icalc because of the relatively small number of 20 lots

(each with 10 � 10 � 50 unit cells). After increasing the

number of lots to 40 in generation 86, the R values improved

signi®cantly. Further improvement was obtained on increasing

the number of lots to 80 and 150 after 149 and 168 generations,

respectively. After 220 generations, the re®nement was

stopped because R values remained constant and a further

increase of the number of lots was not practical with the

available computer resources. The size of the model crystal

from which the lots were taken has been increased in parallel

with the number of lots such that its volume was not smaller

than the sum of all lot volumes. The size was 50 � 50 � 100

cells for 20 and 40 lots, 70� 70� 100 cells for 80 lots and 90�
90 � 100 cells for 150 lots. The size of a single lot was always

the same, 10 � 10 � 50 cells.

The model parameters showed three kinds of evolu-

tionary behaviour: Ja, Jb and Jc converged very quickly (Figs.

5a±c). After about 30 generations, they had almost reached

their ®nal values. The genes Ja and Jb showed a particularly

steep decrease of genetic diversity. For parameters ka, kc and

dRS, diversity increased in the early stages of the evolution

(Figs. 5d, f,g); after about 20 generations, the drift of the

parameter average changed its sign towards smaller values but

genetic diversity remained high. These parameters began to

converge only after parameters Ja, Jb and Jc were close to their

®nal values. The average of kc was almost constant after

generation 33; in subsequent generations, its diversity

decreased slightly (Fig. 5f). Note that none of the parameters

except kb changed its average value signi®cantly after

generation 100, i.e. after six days. With further evolution, the

diversity of the genes became smaller and the average values

decreased slightly. A completely different behaviour was

observed for the gene kb (Fig. 5e). Its diversity and its average

value started to converge only after increasing the number of

lots to 80 in generation 149 and to 150 in generation 168. The

evolution of all parameters illustrates an important feature of

DE: the genetic diversity of a parameter tends to remain high

or to increase as long as a parameter has not found its ®nal

value and as long as the noise in Icalc is high or both. This

behaviour allows individuals to escape from local minima. The

total time required for the DE calculations was substantial.

With 20 lots, the calculation of the ®tness for one generation

took about one hour. Computation times doubled with each

increase of the number of lots. In the last generations, progress

was slowed down to no more than two or three generations

per day. In total, the re®nement took 29 d for 220 generations

(Fig. 5h).

The R values of the 40 surviving individuals are

between 0.141 and 0.153. The R values of single sections

of data for the best individual are between 0.09 and 0.21

(Table 1). The agreement is illustrated in Fig. 3 for the layers

hk2 and hk3 as well as for the layer hk1, which was not

included in the re®nement. Representative close ups of Iobs,

Icalc and Icalc ÿ Iobs from section B2 are displayed in Fig. 6.

They show that even with 150 lots the noise in Icalc is much

larger than in Iobs. However, not all difference intensities are

random. The negative differences shown in Fig. 6(c) encom-

pass and connect the regions of the Bragg re¯ections 392,

301102, 282 and 482. Fig. 4(c) shows that the asymmetry of the

diffuse pro®les along c� is reproduced with high accuracy,

although some systematic deviations seem to remain along b�.
Comparison of the systematic deviations with the random

noise in Fig. 6(c) indicates that the magnitude of the

systematic error is about the same as that of random noise.

This implies that systematic and statistical errors contribute to

the R values about equally.



The systematic differences between observed and calcu-

lated intensities may be due to: (i) insuf®cient ¯exibility of the

disorder model; (ii) a DE re®nement that got stuck in a local

minimum; (iii) a DE re®nement that has reached the area of

the global minimum but was stopped before complete

convergence; or (iv) errors arising from the processing of the

experimental data. Computational limitations prevented

testing these hypotheses. From the relatively low R value of

Rdiffuse = 0.148 (3), we conclude that re®nement ended close to

the global minimum and that the results are reliable.

4.5. Test calculations

Although the results described in the preceding section

were satisfactory, the DE procedure was tested for its scope,

e.g. its potential to ®nd the global minimum if reasonable

starting ranges for the parameter values are not known in

advance and the in¯uence of the number of lots and of the

re®nement parameters fm and fr on the performance of the

algorithm. The available computational resources imposed the

following limitations on these tests: re®nements were not

always run to the point where further qualitative or quanti-

tative improvement could be excluded; they were stopped and

considered successful when the values of the genes covered

the initial range of the full calculation, they were stopped and

considered not successful if the genes diverged away from the

results found in the full calculation (in the latter case, one must

check whether the results represent another, possibly better,

solution to the problem). All test calculations were performed

with the same population size of 40 individuals. It must be

stressed that these criteria neither exclude nor guarantee that

continuation of the re®nement will lead to the results found in

the full calculation. However, provided the genes reach the

volume de®ning the initial values in the full calculation, there

is a good chance that further re®nement ends up in the same

minimum as in the full calculation.

The following re®nement strategies using an in¯ated start

parameter volume were tried out:

A: the same as in the full calculation except for larger ranges

of starting values. The range of initial values of ka, kb and kc

was increased by a factor of ten to [0 . . . 1000]. For Ja and Jb,

the initial values were taken from the range [ÿ10 . . . 10], for Jc

from the range [ÿ20 . . . 0], an increase by a factor of 20. The

limits for the initial values of dRS were set to ÿ0.3 and 0.3.

These changes correspond to an increase of the volume of the

initial search space by a factor of about 108! As in the full

calculation, the number of lots was doubled when �2 stopped

decreasing.

B: like A with the mutation constant fm set to 0.9.

C: like A, but the size of the model crystal reduced to 20 �
20 � 200 cells along a, b and c, respectively, and Fourier

transform calculated from a single lot taken from the top 200

layers.

D: like C but with the chromosome pc randomly selected

rather than taken as the ®ttest of the current population.

E: like C but with weights set to 1=Iobs.
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Figure 6
(a) A small part of the observed intensities, (b) calculated intensities and
(c) corresponding differences Iobs ÿ Icalc in the hk2 layer. Calculated
intensities used for maps (b) and (c) are obtained from the ®ttest
individual in the 220th generation of the reference calculation using 150
lots from a model crystal with 90 � 90 � 100 cells.
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The calculations were stopped after 1.5 to 4.5 d, corre-

sponding to about 50 generations in A and B and 150

generations in C, D and E. Note that, because the number of

lots was generally smaller in calculations C, D and E, a larger

number of generations could be calculated.

None of the re®nements converged to the results obtained

in the full calculation (the reference solution). Inspection and

comparison of calculated diffraction patterns clearly showed

the results of the test calculations to be inferior to those of the

full calculation. In particular, the width of all pro®les parallel

to c� were found to be sharper than found experimentally. It

appears that the density of individuals in the expanded par-

ameter subspace is too low and that the distances between

®rst-generation individuals and the region of the reference

solution is too large. Some positive observations are also

worth noting, however.

In all tests, the correct signs and the relation |Ja| < |Jb| < |Jc|

were found within a few generations even though the par-

ameters Ja, Jb and Jc were larger than the reference values by

factors 10 to 300. Similarly, the k parameters did ful®l the

relation |kc| <� |ka| < |kb|, the same as found in the reference

solution, but exceeded the reference values by factors of 5 to

40. In all calculations, dRS converged to values between ÿ0.03

and ÿ0.05 within a few generations, i.e. close to its reference

value. Relatively accurate results of dRS have been found

without any problems early on in re®nements C, D and E, even

though only a single lot was used initially to obtain Icalc. The

number of generations required in re®nements A and B to

come close to the reference value of dRS and to obtain the

correct qualitative relations between the k and J parameters

was smaller than in C, but the time span required was higher,

because the calculation of the ®tness was based on 20 lots.

For the subsequent tests F and G, only the master computer

and four slots of the Sun SPARC cluster were available, i.e.

wall clock time doubled compared with the reference re®ne-

ment. In re®nement F, the range of starting values for the k

parameters and for Ja and Jb was reduced by a factor of 100 to

[0 . . . 1] and [0 . . . 0.01], respectively. The range for Jc was

reduced to [ÿ0.1 . . . 0] and that of dRS to [ÿ0.005 . . .ÿ0.001].

As a consequence, the diversity of the population was reduced

by a factor of 1010 compared with the reference calculation.

The re®nement was started using a single lot to calculate

®tness. After generation 54, the number of lots was increased

to 2. After generation 90, i.e. after about 30 h wall clock time,

the J and dRS parameters were very close to their reference

values whereas the k parameters were not (Table 2); ka and kb

had increased somewhat and kc became slightly negative. In

order to test whether the converging evolution of dRS and of

the J parameters could also be extended to the k parameters,

re®nement was continued with twice the number of lots until it

reached generation 128. The ®nal number of lots was 150, the

same as used towards the end of the reference re®nement.

After 312 generations (= 45 days wall clock time!), dRS and the

J parameters had come somewhat closer to the values of the

full re®nement but the k parameters did not improve signi®-

cantly. The R value dropped to 0.159 (3), only slightly higher

than the reference value of 0.148 (3). Inspection of the

difference intensities showed that re®nement F reproduces

diffuse features with an accuracy comparable with that of the

reference re®nement, except for the asymmetries in the

experimental pro®les along c� (Fig. 4c). This is a clear indi-

cation that the results from test F are inferior to the reference

solution, i.e. calculation F became trapped in a local minimum.

The observation that a relatively small volume of starting

values led to signi®cantly better results than did a relatively

large volume should not be generalized, because the evolution

of a re®nement depends strongly on the shape of the asso-

ciated �2 surface.

Given the improvement in performance and the quality of

the results of test calculation F, which started with a single lot

instead of 20 lots, the in¯uence of the number of lots on the

early stages of structure determination was investigated in

more detail. The evolutionary process was repeated with the

same parameter ranges as in the reference re®nement, but

now using only a single lot in the beginning (test re®nement

G). The number of lots was doubled at generation 51, 113 and

167 to a total of eight after which no further progress could

be observed. Agreement between observed and calculated

diffraction features is good. Results after 60 and 209 genera-

tions (= 14 and 70 h wall clock time, respectively) are listed in

Table 2. The parameter values and their standard deviations

correspond roughly to the results of the reference re®nement

reached after 30 and 50 generations, respectively, i.e. after 30

and 54 h of wall clock time (with twice the computing power).

This experiment shows that starting DE with a low number of

lots helps to approach the region of the global minimum

Table 2
Comparison of the ®nal results from the reference calculation with intermediate and ®nal results from test calculations F and G.

For further details see text. The computing power available for the reference calculation was about twice that for calculations F and G.

Reference calculation Test calculation F after Test calculation G after

Final result after 220 generations (29 d) 90 generations (30 h) 312 generations (45 d) 60 generations (14 h) 209 generations (70 h)

Ja 0.082 (4) 0.10 (2) 0.077 (4) 0.11 (3) 0.09 (2)
Jb 0.156 (6) 0.14 (2) 0.159 (6) 0.23 (7) 0.15 (2)
Jc ÿ1.19 (3) ÿ1.4 (2) ÿ1.28 (4) ÿ1.3 (2) ÿ1.3 (1)
ka 18 (5) 3 (1) 3.1 (7) 57 (13) 34 (11)
kb 30 (9) 1.7 (6) 6.0 (7) 103 (36) 75 (22)
kc 17 (4) ÿ0.9 (5) ÿ3 (1) 32 (18) 21 (13)
dRS ÿ0.032 (2) ÿ0.022 (5) ÿ0.035 (2) ÿ0.030 (6) ÿ0.038 (6)



within a shorter time. In the reference re®nement, the number

of lots was left constant for large numbers of generations. As a

consequence, none or only a few individuals per generation

were replaced by children over long sequences of generations.

The resulting extended plateau phases show no signi®cant

improvement in the ®tness of the population. A more auto-

matic change in the number of lots will improve the perfor-

mance of the re®nement considerably. A possible scenario

would be to double the number of lots once the number of

upgraded individuals falls below a certain level.

5. Conclusions

Determination of disordered crystal structures with a combi-

nation of evolutionary algorithms and Monte Carlo simula-

tions comprises several steps. The ®rst and crucial part of the

method is the de®nition of a structural genotype, i.e. of a set of

parameters describing the disorder adequately. The energy

parameters should mimic the atomic interactions in a disor-

dered structure and be minimally correlated. The number

should be kept to a manageable size because determining

numerical parameters from diffuse scattering is computa-

tionally demanding. This task requires intuition, experience

and great care. The need to de®ne a model and a considerable

computational expense are the main features distinguishing

the determination of disordered structures from single-crystal

structure analysis. In the latter case, hundreds or thousands of

well de®ned parameters and occupation factors are easily

determined in a matter of minutes on a single PC or work-

station.

Once an adequate genotype has been de®ned, the further

procedure is relatively straightforward. Differential evolution

®nds good approximations to the disordered structure within a

reasonable time, provided that the approximate range of

possible solutions is known. The number of structures equals

the number of individuals in the population. On the one hand,

the lack of uniqueness implied in a population may seem a

disadvantage. On the other hand, the availability of several

solutions with similar ®tness increases the probability of

®nding a structure that ®ts the diffraction data and is sensible

from a chemical and physical point of view. This feature may

be particularly advantageous when the de®nition of the

genotype happens to be ¯awed. Welberry and co-workers

describe ®nding approximate structural models by trial and

error (Mayo et al., 1999; Welberry, 2000; Welberry et al., 2001).

Evolutionary algorithms leave this job to computers and may

be expected to identify the region of the global minimum with

high probability. In this respect, our method is analogous to

modern methods of ®nding approximate solutions to the

phase problem preceding the determination of average crystal

structures. Differential evolution is capable of operating with

very noisy calculated intensities. This feature allows working

with small numbers of lots, accelerates Fourier transformation

and facilitates escape from local minima. In contrast, auto-

matic Monte Carlo methods using numerical derivatives with

respect to the model parameters depend on a large number of

lots from the very beginning to reach a low level of noise in the

calculation of �2. They would seem less suitable for testing

approximate structure solutions.

In principle, re®nement of approximate structure models

could also be done by differential evolution. However, our

calculations show that the performance of the evolutionary

process decreases dramatically when the number of lots has to

be increased in order to reduce noise in Icalc. A least-squares

technique like automatic Monte Carlo re®nement may be

more ef®cient for ®nal optimization of interaction parameters.

The computational effort implied in our implementation of

the differential evolution/Monte Carlo technique is consider-

able. However, the performance of differential evolution can

be improved in several respects: the different strategies of

differential evolution and the effect of crossover and mutation

constants will have to be compared, the number of lots will

have to be adapted to the progress of differential evolution in

an intelligent way, Fourier transformation of large numbers of

lots will have to be parallelized to a much higher degree.

Nowadays, clusters of several hundred inexpensive personal

computers working in parallel are increasingly common tools

in computationally intensive research projects.

It has been shown previously that a complete set of diffuse

scattering data of high quality can be collected at a synchro-

tron in about a day (Weber et al., 2001). At present, the

bottleneck is interpreting them. In this study, we hope to have

shown that the differential evolution/Monte Carlo technique

is a step towards a more ef®cient and automated determina-

tion of disordered crystal structures. We conclude that many

more problems in diffuse scattering and disordered structure

determination will become practical if computing ef®ciency

can be improved by one order of magnitude.

The authors thank Professor Reinhard Neder, University
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